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A differential game in which m dynamical objects pursue a single one is investigated. All the players perform simple motions. 
The termination time of the game is fixed. The controls of the first k (k <~ m) pursuers are subject to integral constraints and 
the controls of the other pursuers and the evader are subject to geometric constraints. The payoff of the game is the distance 
between the evader and the closest pursuer at the instant the game is over. Optimal strategies for the players are constructed 
and the value of the game is found. © 1998 Elsevier Science Ltd. All fights reserved. 

1. STATEMENT OF THE P R O B L E M  

The motions in R n of pursuers Pi and an evader E are described by the equations 

ei : Jci "~ ui, xi(O) = Xio (1.1) 

E:  y = u ,  y(0)=y0 (1.2) 

where xi, ui, y, t> ~ R n, ui is the control parameter of pursuer Pi, and v is the control parameter of the 
evader E; throughout, i = 1, 2 . . . . .  m. 

Definition 1. A measurable function u / =  Uy(t), 0 ~< t ~< 0 satisfying the constraint 

o 
I uj (t) 12 dt ~< p2 for j = 1, 2 ..... k 

o 
(1.3) 

I uj(t) i~ pj for j = k + 1 ..... m (1.4) 

is called an admissible control of the pursuer Pj, where ~ is a given fixed instant of time, p/are given 
positive numbers and k is a non-negative integer. 

Definition 2. A measurable function t> = v(0, 0 ~< t <~ 0 satisfying the constraint I t>(t) I ~< o is called 
an admissible control of the evader E. If  ui = u(t) and u = o(t), 0 <~ t ~< 0 are admissible controls of 
the pursuer Pi and the evader E, respectively, then the trajectory of the pursuerxi(t), 0 <- t <. ~ is defined 
as an absolutely o3ntinuous solution of the Cauchy problem (1.1), and a trajectory of the evader y(t), 
0 ~< t ~< ~, as an absolutely continuous solution of the Cauchy problem (1.2). 

Let  H(x, r) (S(x, r)) denote a ball (sphere) with centre at x and radius r. 

Definition 3. A :function Uj(x, y, u) 
v;: R~ x R~ x R" ~ Rn for j  = 1 . . . .  , k  
~ : / U  x /U x H(O, o) . H(O, pj) for j = k + 1 . . . .  , m 

for which the system 

JCj m U j ( x j , y , u  (1)), xj (O)  -~ XjO 

=u (t), y(O) = y0 

has a unique absolutely continuous solution for any admissible control u(t), 0 ~< t ~< O, of the evader 
E is called a strategy of the pursuer P/. A strategy Ui is said to be admissible if every control generating 
it is admissible. 
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Definition 4. The strategies U/0 of the pursuers Pi, respectively, are said to be optimal if 

inf FI(U I ..... Urn) = FI(UI 0 ..... Umo) 
UI ,.,.,Urn 

where 

Fl(Ui ..... U m) = sup min I x i ( O ) - y ( O ) l  
v(.) I~i~m 

U~ are admissible strategies of  the pursuers P ,  respectively, and o(.  ) is an admissible control of the 
evader E. 

Definition 5. A function V(xl . . . . .  Xm, y), V: /~  x . . .  x R ~ ~ H(0, c)  for which the system 

ki = ui(t), xi(0) = x;0 

= V(xl ..... x m,y), y(0) = Yo 

has a unique absolutely continuous solution for any admissible controls ui(t) ,  0 ~ t <~ 0 of the pursuers 
Pi is called a strategy o t the  evader E. If each control generating the strategy Vis admissible, the strategy 
V is said to be admissible. 

Definition 6. A strategy V0 of the evader E is said to be optimal if 

sup F2 (V) -- F(Vo) 
v 

where 

F 2 (V) = inf rain I x i(O) - y(O) I 
u I ('),....um (') I ~;il;ra 

and ui(.) are admissible controls of the pursuers Pi. 
If FI(U10 . . . . .  Umo) = F2(V0) = y, we will say that the game has a value ), [1]. 
It is required to find the optimal strategies U/0 and V0 of the players Pi and E, respectively, and the 

value of  the game. 
Analogous problems have been investigated in many publications. Among the cases that have been 

considered are, for example; k = 0, m = 2 [2]; k = 0 [3]; k = 0, m ~< n (where n is the dimension of  
the space) [4]. 

This paper will develop a method used previously.f 

2. T H E  O P T I M A L  A P P R O A C H  OF m P U R S U E R S  TO A S I N G L E  E V A D E R  

Consider the differential game (1.1), (1.2). It can be verified that the reachable domain of  the pursuer 
Pi from the initial position xy0 up to time 0 is the ball 

for j = k + l  .... H(xjo,Pj~-~ ) for j = l  ..... k, H(xjo,PjO) 

Let 

Gj (l) = H(xjo,Pj ~[0 + l) for j = 1 ..... k 

Gj( l ) fH(x joP jO+l )  for j = k + l  ..... m 

y = m i n ( / ~  > 0: H(Y° ' ( ;# )c~ l  Gs(l)} (2.1) 

tIBRAGIMOV, G. I., The optimal approach of  two pursuers to a single evader. Moscow, 1987, 16pp. Deposited at Vsesoyuz. 
Inst. Nauch. Tekhn. Informatsii, 1987, 5384-1387. 
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Theorem. If oO ~ pjO + ~/(j = k + 1 . . . .  , m) and 0'0 - x~0, P0) >~ 0 for some non-zero vector P0 
defined by formula (2.1), then the number 7 is the value of the differential game (1.1), (1.2). 

The proof  of the theorem is based on several lemmas. 
Suppose C is the boundary of a closed bounded set D C R ~, and X / =  {x: x ~ 1~, (x, Pi) <~ di} are 

certain half-spaces, where Pi are given unit vectors and di are given numbers. 

Lemma 1. Le t  Po be a non-zero vector such that (P0, Pi) <~ di and let C C U X,.. Then D C U X/. 

Proof. It will suffice to consider the case when intD ~ O. Suppose the contrary. Lety e int D. Hence it follows 
that y lies in none of the half-spaces X,., i.e. y ~ U Xi. Then no point of the half-line y(t) = y + tpo, t >>- 0 lies in the 
set UXi, because (y(t),pi) = (Y, pi)+t(po, Pi) > di. On the other hand, this half-line cuts the boundary C of D at some 
point y~. Then, by the assumption of the lemma, yl ~ U X,.--a contradiction. This proves Lemma 1. 

Let  X be some n-,rlimensional half-space containing the point Xjo, wherej  ~ (1 . . . . .  m} is some index. 
There  are two possiible cases: the control uj(t), 0 <~ t <~ 0 of the pursuer is subject either to an integral 
constraint (1.3) or to a geometric constraint (1.4). Suppose the first case occurs. We introduce the 
notation Y = X t-I H(yo, o0) .  

Lemma 2. Ify(O) ~ X and 

Y c H(x/o,pi~r-O) (2.2) 

then a strategy of pursuer Pj exists guaranteeing the equality x/(O) = y(O). 

Proof. Let u = off), 0 <<. t <- 0 be an arbitrary admissible control of the evader E. We define a strategy of the 
pursuer P:. in the time interval [0, 0] as follows: 

uj(t)  = f(Yo - X j o ) / O + u  (t), O ~  t ~  T (2.3) 
~0, T < t ~  0 

where T E [0; O] is tile time for which 

T 
_ 2 J I u j ( t )  12 d t  - p~ 

0 

provided such a time exists 
Let Xjo = Yo. Then it follows from (2.2) that aO ~< pj~/O, and (2.3) takes the form uj(t) = u(t). Consequently 

I luj( t)  l 2 d t = f  
o o 

lu (t)I ~ dt <~ ~,~2 <~ p~ 

i.e. the control uj(t) = t)(t), 0 ~ t ~< a~ is admissible. It clearly guarantees that xj(t) = y(t), 0 ~< t ~ O. Thus, the 
lemma is true in this case. 

Now let xj~ # Y0. Faat 

e = tso- xjo):yo- x~ 

a = max{(z -xjo, e): z e 1:3, b = max{(z -Y0, e): z ~ I'3, where (x,y) is the scalar product of the vectorsx andy. 
Note that 

a -  b = ~vo-x~o, 0 = ~ y o - x ~  

It follows from (2.2) that 

p ~ l ~  - -  (y2,~.2 ~ a 2 _ b 2 

We will show that the strategy (2.3) is admissible. Noting the inequality 

O 
i (u (t), e)dt ~ b 
0 

(2.4) 

(2.5) 
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which follows from the fact thaty(O) ¢ X and from (2.4) and (2.5), we deduce that 

o 1 12 2 I luj(t) 12dt=~lyo-xjo + ly o-xjol 
o 

~< 1 ( ( a -  b) 2 + 2(a - b)b  + o21~ 2) ~< p~. 

i.e. the pursuer's strategy thus constructed is admissible. 
We will now show that the strategy (2.3) guarantees the quality xj(O) = y(O). In fact 

o o 
xj (O)  = Xjo + ~ uj( t)dt  = YO - Xjo + Xjo + ~ V (t)dt = y(O) 

o o 

Lemma 2 is proved. 

I (V (t), e)dt + 020 
o 

Now consider the case when the pursuer's control is subject to geometric constraint (1.4). 

L e m m a  3. Ify(O) e X, cs ~< p and 

Y c H(x~u, pjO) (2.6) 

then a strategy for pursuer Pj exists guaranteeing that x/(O) = y(O). 

Proof. Let o = o(t) ,  0 <~ t <- 0 be an arbitrary admissible control of  the evader. We define a strategy 
for pursuer P: as follows: 

Go ( t ) -  (v (t) ,e)e- erj (t), x i (t) ~ y(t) 
uj(t)  = Iv (t), x ~ t ~ 0 (2.7) 

rj(t) =[p~ - a  2 +(v (t),e)2] ~ 

where • e [0; O] is the first time at which xj(x)  = y (x ) .  Clearly, the strategy we have constructed for 
pursuer Pj is admissible. 

Ifxj0 = Y0, it follows from (2.7) that ui(t ) = u(t) ,  0 <- t ~ O. Then it is clear that xj(O) = y(O). 
Let x/0 ;e Yo. Then by (2.4) and (2.7) we have 

y ( x ) - x j ( x ) = e f ( x ) ,  f(~) = a - b -  J (rj ( t ) -  (p (t),e))dt 
o 

Obviously, f(0) = a - b  = [ x:0 -Y0 ] > 0. 
We now show that f(O) ~< 0. It will then be proved that f(x) = 0 for some x e [0; 0]. Consider the 

vector-valued function g(t )  = (~/(p~- or2); (o(t), e)). The inequality 

! Ig(t)ldt ~*1! g(t)d~ 

implies that 

f(l~) ~ a - b + b -  [(p~ - 0 2)0 2 + b 2 ]~J ~ 0 

(we are using the inequality a 2 - b 2 ~< (p~ - o~)02, which follows from (2.6)). 
Consequently, for some x ~ [0, O] we have xj(x) = y(T). By the construction of the pursuer's strategy 

(2.7), we have ~.(t) = o(t )  for x ~< t ~< O. Hence it follows that xj (O)  = y(O), Lemma 3 is proved. 
We now introduce fictitious pursuers (FPs)Zl . . . . .  zk, Zk+l . . . .  , Zm, whose motions are described by 

the equations 

zi = wi,  zi(O) = Xio 

and whose controls must obey the constraints 
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J Iwj(t)12dt<~ p i +  , j---1 ..... k 
0 

I w j ( t ) t ~ p j + { ,  j f k + l  ..... m 

It can be shown that the domain of reachability of a FP zi from the initial position Xio up to time 
is a ball Gi(y). By the; definition of the number T, we have 

H(Yo, 00) c u G~(y) (2.8) 

l = { j :  j e { l  ..... m}, S (yo ,aO)nGj(7)}#~  

Let 

It then follows from (2.8) that 

H(yo,aO) c U Gj(T) (2.9) jel 

Put 

=I(Yo-Xio)/lYo-Xiol, Xio ~ Yo 
el [Po, Xio = YO 

aj = max{(z-Xjo,ej): z e S(Yo,OO)nGj(7)}, 

Xj = {x : x e R", (x - Xjo, ej) ~ aj }, j e I 

jel 

Clearly 

S(Yo, crO) c~ G i(7) c X j, j e I 

Hence, in view of (2.9), we have 

y (O)c  U Xj (2.10) 
je t  

If we now recall the assumption of the theorem, (P0, ej) >! O, j e I, and use Lemma 1, we 

obtain 

H(yo,O'O) = U Xj jel 

We define strategies for the FPs in the time interval [0, ~] as follows: 

Xjo)l+o (t), 0<~ t <~ Tj 
wJ (t) = {(oY, °- Tj<t, jel o 

where Io = I N {1 ..... k}, Tj is the time for which 

~ Iwj(t)12dt = Pj+ 
0 

(2.11) 

if such a time exists 

f~ (t)--(U (t), ej)ej +ej~(t), 
wj(t)= (t), x j ~ t ~ O ,  

zj (t) ~ y(t) 

je 11 
(2.12) 
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~.(t) = [p /+  ~:/0) 2 - (y2 "4" ( U  (t), e/)2] 1/2, 11 = I n {k + 1 , . . . ,  m}, and ~/is the first time for which 
z/(x/) = y(x/). 

It follows from (2.10) thaty(O) ~ Xs for some s ~ L Then, using the fact that 

X, n H(y0, aO) c G,(T), s e I 

which follows from the definition of the half-space Xs, we see that the assumptions of Lemma 2 are 
valid if s ~ { 1 . . . .  , k} fq I and those of Lemma 3 if s e {k + 1 . . . .  , m} f3 L As a result of  these lemmas, 
the strategy for the FP, (2.11) ifs e I0 or (2.12) ifs ~ 11, guarantees the equality z~(O)y(O). 

Thus, the strategies constructed for the FPs guarantee that z~(O) y(O) for some s ~ L 
We will now prove the theorem. We construct strategies for the pursuers with the help of the strategies 

of  the FPs 

pjO ~ 
uj (t) = pjO~ +--------~ wj(t), 0 ~< t ~ O 

j to 
=[1, j e l  I 

uj(t)=O, O~<t<~O, j~{1  ..... m}l l  

It follows from the equality zs(O) y(O) for s ~ I0 that 

I xs (O)-Y(O)l='  x'(O)-Zs(O)'=[!" (Us(t)-Ws(t)dtl<~ P, '~"  + T T  Oo, Iws(t) ldt<~T 

(we have used the Cauchy-Bunyakovskii inequality). 
If s e 11, we obtain an analogous inequality, since I ws(t) I <~ Ps + Y/~. 
Thus, the pursuers' strategies guarantee that [x~(O) -y (O)  I ~< ~' for some s ~ L 
In order to complete the proof of the theorem, it remains to prove the existence of a strategy for the 

evader E which guarantees that 

Ix~(O)-y(O)l ~> T (2.13) 

for any admissible controls ui(t), 0 ~ t ~ O. 
By the definition of 7, a point z0 ~ H(y0, aO) exists such that max Ix - z01 = Y, where the maximum 

is taken over all 

k 
x ~ U H(X/o,P/~¢V~)U ~J H(Xjo,PjO) 

j=l j=k+l 

The evader's control is defined as follows: 

u (t) = a(z o - yo)l~zo - y0 I, 0 <~ t ~ O 

Clearly, this control guarantees the validity of inequalities (2.13). Hence ~, is indeed the value of the 
game. The theorem is proved. 
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